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Viscid/Inviscid Interaction Analysis of

Subsonic Turbulent Trailing-Edge Flows

Mark Barnett and Joseph M. Verdon
United Technologies Research Center
East Hartford, Connecticut 06108

SUMMARY

Subsonic turbulent flow past thin-airfoil trailing edges is studied using a
finite Reynolds number viscid/inviscid interaction model. Here, the flow in the
outer or inviscid region is governed by the equations of linearized potential
flow theory, while that in the inner or viscous region is governed by Prandtl's
boundary-layer equations cast in terms of Levy-Lees variables. The effects of
turbulence are represented using an algebraic turbulence model based on the eddy
viscosity concept. The flow in the vicinity of the local strong interaction is
determined by iteratively matching the solutions in the inviscid and viscous

regions using a quasi-simultaneous coupling procedure. Turbulent mean-flow solu-

tions have been obtained for a range of symmetric and asymmetric wedge-shaped
trailing-edge geometries. Results illustrating the effects of airfoil thickness
and loading on the detailed mean-flow behavior in the trailing-edge/near-wake

region are presented.
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INTRODUCTION

For flows of practical interest in either external or internal aerodynamics

the Reynolds number is usually sufficiently high so that the flow over an airfoil
or blade can be divided into two regions: an "inner" dissipative region consist-
ing of the boundary layer and wake, and an "outer" inviscid region. The princi-

ple interaction between the viscous and inviscid regions arises from the
displacement thickness effect which leads to a thickened semi-infinite equivalent
body with corresponding changes in surface pressure. If the interaction is

"weak", i.e., the viscous effect on the pressure is small, the complete flow
problem can be solved sequentially. This traditional approach for calculating

the interaction between the viscid and inviscid parts of the flow is based on a
direct heirarchy between the two regions, which is applicable as long as the

disturbances to the inviscid flow due to the displacement effect are small.

In reality, the flow over an airfoil involves both a weak overall interac-
tion arising from standard displacement effects, and also from wake curvature
effects, and local strong viscid/inviscid interactions which arise due to rapid
changes in geometry or boundary conditions. In particular, at an airfoil
trailing edge a strong interaction arises from the abrupt change from the no-slip
boundary condition on the airfoil surface to a streamline tangency (slip)

. .boundary condition in the wake. Such features lead to singularities in a classi-

cal boundary-layer solution and a subsequent breakdown of a weak-interaction
solution procedure. In addition, rapid changes in the displacement thickness in
the strong-interaction region cause substantial changes in the local inviscid
pressure field. The concept of an inner viscous region and an outer inviscid

region still holds, but the classical hierarchical structure of the flow no
longer applies. Thus in a local strong-interaction region the heirarchy changes
from direct (i.e., pressure determined by the inviscid flow) to interactive

(i.e., pressure determined by a mutual interaction between the inviscid flow and

the viscous layer) and this change must be accommodated in the development of a
local solution procedure.

In this report an analytical procedure based on finite Reynolds number

viscid/inviscid interaction theory is presented for predicting subsonic turbulent
flow past an airfoil trailing edge. The present effort is a continuation of the
work reported in Refs. 1 and 2, where subsonic laminar flows past thin airfoil

trailing edges are considered. The approach taken employs an interacting
boundary-layer model. In this model the flow in the outer inviscid region is
assumed to be potential and that in the inner region is assumed to be governed by
Prandtl's boundary-layer equations, which are written in similarity-type
variables. Inverse solutions to the finite-difference viscous-layer equations
are determined by a superposition procedure, which is a particularly convenient
technique for solving for the flow in an asymmetric wake. The solutions in the
inviscid and viscous regions are matched through a quasi-simultaneous coupling

3
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procedure using global iteration to obtain a converged result for the complete
flow field. Our intention is to provide an accurate and dependable numerical
scheme for predicting strong trailing-edge interactions and to elucidate turbu-
lent flow behavior in airfoil trailing-edge/near-wake regions. Therefore we have
attempted to obtain viscid/inviscid solutions on highly refined numerical grids
and by using a rather stringent convergence criterion for the global viscid/
inviscid iteration procedure.

In Refs. 1 and 2 solutions are presented for subsonic laminar attached and
separated trailing-edge flows. In particular, separated laminar-flow solutions
are presented in which local symmetric reverse-flow regions extend over twenty
percent of airfoil chord and one-sided reverse-flow regions (adjacent to the
airfoil suction surface) extend over ten percent of airfoil chord. We mention
also the related studies, based on the asymptotic triple-deck (Re + 1) model, by
Smith (Refs. 3 and 4), who determined numerical solutions for separated flow past
symmetric and asymmetric airfoil configurations, and was the first to demonstrate
that one-sided closed laminar separation bubbles at a loaded subsonic trailing
edge could be predicted using viscid/inviscid interaction theory. Later Elliott
and Smith (Ref. 5) determined similar solutions for supersonic trailing edges.
In addition, Veldman (Ref. 6) and Veldman and Lindhout (Ref. 7) have obtained
results for laminar and turbulent trailing-edge separations using a finite-Re
interacting boundary-layer model.

The numerical results obtained herein for turbulent flow demonstrate the
behavior of the flow in the trailing-edge/near-wake region for thin loaded and
unloaded airfoils. As would be expected, the turbulence strongly influences the
behavior of the mean flow, particularly with regard to the separation of the
viscous layer. This is demonstrated rather dramatically by the laminar and
turbulent results obtained for the same symmetric and asymmetric trailing-edge
configurations. The turbulent flow results indicate that such flows remain
attached to the airfoil surface over a much wider range of airfoil geometries
than those determined in Refs. 1 and 2 for high Reynolds number laminar flows.

N4

,

%

I-

d



R85-956634-6

PROBLEM DESCRIPTION AND FORMULATION

In the following discussion the flow variables and spatial coordinates are
* dimensionless. Lengths have been scaled with respect to the length of the air-

foil L , density, velocity and viscosity with respect to their free-stream

values, P., U., and v., respectively, pressure with respect to twice the free--. \* *"2
stream dynamic pressure, PU. , and temperature with respect to the square of the

free-stream speed divided by the specific heat at constant pressure, U. /Cp.
Here the superscript * denotes a dimensional quantity and the subscript - refers

to the free-stream conditions at infinity.

We consider high Reynolds number (Re= adiabatic turbulent flow,

with negligible body forces, of a perfect gas with constant specific heats,
linear viscosity law and unit molecular and turbulent Prandtl numbers, past the

trailing edge of an airfoil (Fig. 1). The flow is two-dimensional (in the x, y-

4 plane) and subsonic with free-stream velocity, U., in the positive x-direction.
The airfoil is thin and slightly cambered and it is located mainly along the
interval [0,1] of the x-axis. Viscous effects are concentrated in relatively

thin layers adjacent to the airfoil surfaces which merge into a thin wake behind
the airfoil. The position of the upper and lower surfaces of the airfoil and
wake displacement body are defined by

y±(x) = h±(x) ± 6±(x), XE[O,1]
__ (1)

= hw(x) ± 6 +(X), x>l

where h+ and h- define the locations of the upper and lower surfaces of the

airfoil, hW defines the location of the reference wake streamline, and 6+ and
6- are the upper- and lower-surface viscous displacement thicknesses (Fig. 1),

respectively. Note that in Fig. 1 the symbols S, I and k/refer to the airfoil
surface, the displacement surface and the reference wake streamline, respective-
ly. The latter is an arbitrary curve which emanates from the trailing edge of
the airfoil and lies within the actual viscous wake. Under the stated assump-
tions concerning airfoil shape and flow Reynolds number, the projection of the
airfoil and wake displacement body on the y-axis will be small (i.e., of

,..O( ) .
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Solutions will be determined for the flow in the trailing-edge region of the
airfoil using finite Re, viscid/inviscid interaction concepts. If the outer
inviscid flow is assumed to be isentropic and irrotational, then a velocity
potential 0 = U~x + 0 exists where the first-order (in ) or disturbance poten-

tial can be determined by the methods of linearized potential flow theory. The
flow in the inner or viscous region is assumed to be governed by Prandtl's
boundary-layer equations which, to within the order of approximation considered

here, can be solved in terms of coordinates parallel and normal to the free-
stream direction. The effects of turbulence are incorporated by using the
algebraic eddy-viscosity model due to Cebeci and Smith (Ref. 8) for surface
boundary layers and the near-wake turbulence model of Cebeci, et al. (Ref. 9)
which has been modified in the present study to permit the calculation of
asymmetric wakes.

In the present analysis viscous displacement effects at the trailing edge
are regarded as "strong", while wake curvature effects are regarded as "weak".
This treatment is in accordance with the triple-deck scaling requirements for

laminar flow at asymptotically large Reynolds number (Ref. 10). It is assumed,

for lack of a correspondingly well-developed theory for turbulent flow, that this
treatment can be extended to the turbulent problem. Thus, iterative solutions of
the coupled inviscid and viscous equations will be repeatedly determined to
obtain a converged solution which accounts for strong-displacement interactions,
and the solution resulting from this procedure will then be corrected to account
for wake curvature interactions. In the quasi-simultaneous procedure used in
solving the strong-interaction problem, the viscid and inviscid solutions are

coupled at each streamwise station on the airfoil and in the wake. This leads to
a relatively fast convergence of the global iteration procedure as compared to

the convergence achieved using the so-called semi-inverse procedure, which is
frequently employed for viscid/inviscid interaction problems.

.1 6
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R859563-6THE INVISCID REGION

The disturbance potential is governed by the linear equation

.j-M J *x + 0= , (2)

where M is the Mach number. In addition, the pressure P is related to the

potential using Bernoulli's equation, i.e.,

P = Po + P (YMI'- - (3)

Here P = (yM2) -1 is the free-stream pressure, p is the first-order or distur-
bance pressure, and y is the specific heat ratio of the fluid.

The inviscid flow is determined as a solution of Eq. (2) which is subject to
a flow tangency condition at the airfoil displacement surface, jump conditions on
normal velocity and pressure across the wake, and the condition of uniform flow
in the far field. Since first-order airfoil-surface and wake boundary conditions
can be referred to the x-axis, it follows that

y y=O_+ [h(x) ± 6+(x)]' for xc[0,11, (4)

by] = 6 (x) and [p] = K(x)6w(x) + ew(x) ] for x>l,y=0, (5)

and

0 0 as IxI + . (6)

Here the prime denotes differentiation, :[ J denotes the difference (upper minus
lower) in a quantity across the wake, 6W and ew are the displacement and
momentum thicknesses, respectively, of the complete wake, and K is the curvature
(positive - concave upwards) of the reference wake streamline. A complication
arises in that the location, and hence the curvature, of the reference wake
streamline is not known a priori; however, to within lowest order in c the wake
can be represented by an arbitrary curve which emanates from the trailing edge of
the airfoil and lies within the actual viscous wake.

7
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The solution, *(x,y), to the foregoing boundary-value problem can be
determined conveniently using complex variable theory and, in particular,

Cauchy's integral formula. We refer the reader to Ref. 11 and Refs. I and 2 for
more complete details, and list here only those results pertaining to the first-

order pressure acting on the airfoil surface. This pressure can be expressed in

the form

px,O-) = PD(xO) [Pwc(X)]/2

= pS(x,O) EpA(x)]/2 A W)/2, xe 0,1 (7)

where the superscripts + and - refer to the upper and lower surfaces, respective-
ly, of the airfoil displacement body; pD(xO±) is the first-order surface
pressure due to displacement (airfoil + viscous) effects, pS(x,0) is the

symmetric component of this pressure due to the displacement-body thickness;
[A] is the jump in pressure across the airfoil due tc displacement-body
camber; and LpwC3 is the jump in pressure across the airfoil due to wake curva-
ture. The terms on the right-hand-side of Eq. (7) can be evaluated from the

following expressions:

pS(x,0) T 1 (
0F2. 0 X-C

,'-2 1 /2A 1 2 jIM I/  1 /2(

0D f7 d ; (9)

and

1 [PA (')] " ()6()+ ()

_W d4 dC (10)

0 x-C X-C

Here the symbol denotes a Cauchy principle-value integral, DT (y+ -_)/2
is one-half of the displacement-body thickness, and y = DC - (y+ + y-)/2
defines the location of the displacement-body camber line. In Eq. (10) the wake

curvature K is taken to be the curvature of the inviscid wake camber line as
determined from the strong-displacement interaction inviscid solution; i.e.,

d1
K(x) = D"(x) f D I dC, x>l. (11)

C 2r dx 0 X-C

8
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THE VISCOUS LAYER

For thin airfoils operating at high Reynolds number the viscous-layer

equations (i.e., Prandtl's boundary-layer equations) can be written in terms of
coordinates parallel (x) and normal (y) to the free stream direction. First
Prandtl's transformation; i.e.,

± ±Re / 2 (y-h±)

and (12)
± ±Re 1/ 2 (v-uh.)

is introduced, where h+ = h- = hW for x > 1, u and v are the velocity compo-
nents in the x and y-directions, and the scaled normal coordinate and normal
velocity component Z are positive along the outward normal to the x-axis. To
facilitate their numerical resolution, we recast the viscous equations in terms
of Levy-Lees variables. Use of these variables leads to a reduction in numerical
truncation error because streamwise gradients of the dependent flow variables are
minimized, and also gives a better account of the growth of the viscous-layer
allowing one to use a fixed number of grid points in the normal direction (see
Davis and Werle, Ref. 12). In addition, the Levy-Lees variables admit convenient

similarity solutions for an important class of laminar flows.

Thus with new independent ( and n) and dependent (F and V) variables
defined by

xu y

+ f Pejeuegdx, l f p d (13)

XI V2 0

and

Fu/u V =2 [F - + pv VR-e (20) 1' 2  / 2 ; (14)es ax dx

the viscous equations assume the form

,9

9
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aF aV
2 - + - + F = 0 (15)

ac a~ n

and

3F aF 2a aF
2 F - + V - + O(F -1) - - (t -) = 0, (16)

*a an an an

where

LEdu 2  2E dMe( 1 + -f ) = -(17)
ue dE 2Te Me dE

and

9.. =pi (1 + Y~e)/(PeUeg). (18)

In Eqs. (13) through (18) the subscript e refers to the edge of the viscous

layer, P and U are the fluid density and viscosity respectively, YT is a
streamwise intermittency factor which will be assumed simply to be unity, and e
is the turbulent eddy viscosity, which will be discussed in detail below. The
quantity g(x) appearing in Eqs. (13) and (18) was employed in Ref. 13. It is

specified so that the coefficient £, defined in Eq. (18), is approximately equal
to one over most of the viscous layer; it appears in the definition of E in order
to maintain a nearly constant n value for the edge of the boundary layer in

turbulent flow. Fluid properties at the edge of the viscous layer (i.e.,
inviscid properties at the displacement surface, 2) are determined from
Bernoulli's equation and the isentropic relations for a perfect gas. Note that
as a consequence of our original assumptions, the total enthalpy is constant

throughout the field and therefore only the continuity and momentum equations,
Eqs. (15) and (16), must be solved to determine the flow in the viscous layer.

The boundary conditions on F and V are as follows:

F + 1 for T + , (19)

F V 0 for < TE' n=0, (20)

10
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: .. and

V 0 for > TE n =O. (21)

Condition (21) follows from the requirement that the velocity component normal to
the reference wake streamline must be zero. For convenience, the subscripts +
and - have been omitted from Eqs. (13) through (21).

To determine the effect of the viscous layer on the outer flow, the
displacement and momentum thicknesses must be evaluated from the upper- and

lower-surface viscous solutions. It follows from the standard definitions of the
displacement thickness, 6, and the momentum thickness, 0, that

PeUe6 (Re/2t)1 / 2 = f [I-F + -2 dn (22)
0 2

O and

"e=(Re/2)/2 f (1-F)Fdn. (23)

0

The displacement and momentum thicknesses of the complete wake are then given by

6
W = 6+ + 6- and eW = 6+ + e . (24)

Turbulence Model

At high Reynolds number the flow in the the viscous-layer is mostly
turbulent. In particular, the flow usually undergoes a transition from laminar
to turbulent near the leading edge of the airfoil. Thus, in order to simulate
real flows, a turbulence model is generally required. In the present study we

employ the eddy-viscosity model developed by Cebeci and Smith (Ref. 8) for air-
foil boundary layers and subsequently modified by Cebeci, et al. (Ref. 9) for

near-wake flows.

•J.
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In this model the turbulent boundary layer is viewed as consisting of two
distinct regions, an inner one and an outer one. The eddy viscosity in the inner
and outer regions is given (in terms of Levy-Lees variables) by

e i =0.16 D2(2Re) I /  p 2 1-11F/9nj for n<n

e= (25)
1-F

eo  0.0168 pu-l(2ERe) I f -d for n>nl
0 P

respectively, where nI is defined as the smallest value of n for which eo =

ei. Here

-V2~ E din
D = 1 - exp - f -) (26a)

aue 0 P

where the length scale, a, is given by

a f 26/[pRel/ 2 (l-l1.8p+ ) /2 ur] (26b)

and the pressure gradient p+ and shear velocity uT are defined by

.+ = 2 t / (Re u (26c)-(l eue) g d ~

and

r. ?. t"P" u. -1/4[ UF 1/212u ue (2ERe) (Cf/[ W ) lF1 (26d)

-n= nfm =

,* respectively. In Eq. (26d) rm is taken to be the value of n at which VgF/an

reaches a maximum value. This modification to the usual definition of uT, in
which r. is set to zero, was introduced in Ref. 14, and is applied here to
avoid spurious skin-friction predictions in the vicinity of boundary layer
separation and re-attachment points.

In the turbulent wake the inner region is further subdivided into two parts.

12
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Thus

= 0.4 exp[ 2 .75 uT- 2.081 for 0 < n <

e = (27)

S. I ei for n2 < n < n

where n, is the value of n such that

i dn u p(n) p UeF() 8].)
= 2.0 (28)

0 P 2Re uTEP(l) 2.75 uE

In Eq. (28) F(n) is the computed velocity profile in the wake and u is the
* UTE

shear velocity at a cusped trailing edge or at a specified location upstream of
the trailing edge for a wedge-shaped trailing edge, or, if the flow separates,
at a point upstream of the separation point. The value of n2 is determined from
the condition that ew = ei at n2" For n2 < n < ii, the first of Eqs. (25) is

applied with D = 1. To prevent ew from exceeding eo at large distances down-
.4 stream of the trailing edge, once eo 

= ew the eddy viscosity for larger

2 values of E is assumed to be the local value of eo across the boundary layer.

The foregoing model was developed for symmetric wakes. To compute
asymmetric wakes a modified version was applied. In this version the value of

ew was calculated by referring all quantities previously referenced to the wake
centerline (reference wake streamline for symmetric flows) to the locus of the
minimum streamwise velocities. In general, this procedure leads to a discontinu-
ity in ew across this locus, since ew will be different on the two sides of
the wake. However, for the cases calculated here, the discontinuity was found to
be quite small. Similarly, the inner eddy viscosity, ei , in the wake is
computed using quantities referenced to the minimum velocity locus. The incom-
pressible displacement thickness appearing in the expression for the outer eddy
viscosity has been calculated relative to the reference wake streamline (n = 0).

Although this quantity could also have been determined relative to the minimum
velocity locus, since the distance between the wake streamline and the locus of
the minimum streamwise velocities is small, this would make little difference in
the final result. As the flow proceeds downstream it returns to a symmetric
state. Therefore, although there might be a small discontinuity in eo across
the locus of minimum velocity, it will disappear with increasing distance down-

stream from the airfoil.

13
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The foregoing modifications to the wake turbulence model of Ref. 9 were
considered adequate for the present asymmetric flow calculations. However, these
changes should only be viewed as provisional, until a more rational near-wake
turbulence model becomes available. One possible alternative to the turbulence
model used here for asymmetric flows is discussed in Ref. 15.

U'14oa .
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NUMERICAL SOLUTION PROCEDURES

A solution for the complete flow field is determined by matching the
solutions to the inviscid and viscous equations. In the present analysis itera-
tive solutions of the inviscid and viscous equations are determined to account

*.\* for strong-displacement interactions and the resulting inviscid solution is then
corrected to account for wake curvature interactions. Strong-interaction effects
are determined using a global iteration procedure. Here the displacement thick-
ness distribution, 6n(x), for the (n+l)th iteration level is prescribed, and the
inviscid and viscous equations are solved to determine an intermediate displace-
ment thickness distribution, 6n+I/2(x). The (n+l)th distribution, 6n+l(x), is
estimated according to the relation

6 n+
l = . 6 n+1/2 + (l-w)6

n  (29)

where w is a relaxation parameter. This process is repeated until the maximum
difference between 6n+l(x) and 6n(x) over all streamwise mesh stations satisfies
a specified convergence criterion.

-' .. In Refs. I and 2 a semi-inverse global iteration procedure was used to
determine the flow in strong viscous/inviscid interaction regions. In this
approL-h the inviscid and viscous equations are solved independently at each
level o. -he iteration procedure to determine an inviscid pressure distribution,

Pinv(x), at the displacement surface, and a viscous pressure distribution,

Pvisc(x), in the viscous-layer. The (n+l1/2) estimate for the displacement thick-
ness is then obtained using the global iteration formula developed by Carter
Ref. 16; i.e.,

ini  [x [n+l n+l ]
" 6n+I/2(x) = 6n(x) ) + Pinv visc

Equations (30) and (29) are applied to update the displacement thickness distri-
butions for the boundary layers on the upper and lower surfaces of the airfoil
and for the complete wake.

SThe semi-inverse procedure is generally satisfactory, giving reasonable con-
vergence rates for attached flows, but it requires a prohibitive number of itera-

tions using substantial underrelaxation (w < 1) to achieve converged solutions
for separated flows. The stability analysis of Wigton and Holt, Ref. 17, indi-
cates that the semi-inverse procedure will encounter stability problems for large
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displacement thickness gradients and/or for small streamwise mesh spacings, such
as those required to resolve the flow at the trailing edge of an airfoil or in a

local reverse-flow region. A numerical demonstration of this stability problem
is given by Edwards and Carter Ref. 18.

An attractive alternative to the semi-inverse procedure is the so-called
quasi-simultaneous coupling procedure of the type introduced by Veldman Ref. 19.
Several methods for implementing the quasi-simultaneous procedure have been

developed and applied to the calculation of strong-interaction flow fields (e.g.,
see Veldman Refs. 6, 7, Edwards and Carter Ref. 18, Davis Ref. 20, Le Balleur and
Girodroux-Lavigne Ref. 21). Here, at each level of the global iteration, the
viscid and inviscid solutions are coupled locally at each streamwise station in

the strong-interaction region. Thus, instead of solving the viscous and inviscid
flows separately for a prescribed displacement thickness distribution and then

using a relaxation formula like Eq. (30) to update the displacement thickness,
the viscous and inviscid equations are solved simultaneously. Global iterations
on the displacement thickness distribution are still required, but the conver-
gence rate of the iteration procedure is considerably enhanced over that achieved

with a semi-inverse calculation. This is demonstrated in the results presented
in Ref. 18 where the convergence rates of the semi-inverse and quasi-simultaneous
methods are compared.

The semi-inverse global iteration procedure was employed in Refs. 1 and 2 to
predict laminar attached and separated trailing-edge flows. Consistent with the
observations reported in Ref. 18, and the stability analysis of Ref. 17, the
convergence rate was found to decrease as the displacement thickness increased,
and severe underrelaxation was necessary to predict flows with large separated
regions. Based upon these observations, and the demonstrated improvement in

convergence rates possible with the quasi-simultaneous solution procedure, the
latter has been adopted for the present investigation of turbulent trailing-edge
flows. The details of the present implementation of the quasi-simultaneous pro-
cedure will be given below, but first we outline the numerical methods used to
solve the equations governing the flow in the inviscid region and in the viscous

layer.

Inviscid Surface Pressure

We require numerical solutions for the first-order inviscid surface pressure
and the viscous displacement thickness over a strong-interaction solution inter-
val extending from x 4 x, to x m xF. First, we consider the inviscid solu-
tion. The integral appearing in Eq. (8) for the symmetric component of the
pressure is here approximated over the strong-interaction solution domain by a

trapezoidal-rule quadrature, i.e.,

16

ZN %;: i-it r.- eZ 2 6



R85-956634-6

XIE IE-1
d; Djx x) (31)

XlB j-IB i -

where i and j are streamwise mesh point indices, IB and IE refer to the mesh

stations at the beginning and end of the strong-interaction solution domain
respectively (i.e., at xI and XF), and ij - (x.+, + x.)/2. This representation

for the symmetric integral corresponds to the iscretization used by Veldman,

Ref. 19, and is accurate to first-order in Ax, as opposed to the second-order

accurate representation used in Ref. 2. The reason for choosing this particular

discretization for the symmetric integral will be discussed below. Although

neglected here, contributions to the local (at x - xi) pressure due to thick-

ness effects from upstream (0 < < xI) and downstream (at > xF ) of the

strong-interaction region can be determined by analytical or numerical integra-

tion (using trapezoidal-rule quadrature) depending upon the assumed functional

form of the thickness distribution, DT(X).

It is somewhat more difficult to determine the pressure difference

* component, [pt , because of the singular term [/(1- )]1 /2 which appears inside

the integral on the right-hand-side of Eq. (9). However, a first-order accurate

approximation to this integral has been determined in Refs. 1 and 2 and is given

by

I --- 1--- / d " Dc(xj )I(xi,xj,xj+ 1) + D'(1)I(xiXT 1) (32)(E ~ c ~j+l ('l ci'IT-'1
i j=IB

where the subscript IT refers to the trailing-edge mesh line. The integral term

I appearing in Eq. (32) is given by

(xi,xj xj+  = d (33)j xi-4
xj

where f(;) = [/(I-;)]11 2, and it can be evaluated in closed form.

Once a converged solution to the strong-displacement interaction problem is

achieved, the pressure distribution must be corrected to account for wake curva-

ture effects. The curvature of the reference wake streamline is determined by a
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numerical approximation to Eq. (11). Since ic(x) must only be determined for x >

1, the integral on the right-hand-side of Eq. (11) can be evaluated by a simple

trapezoidal-rule quadrature. The pressure difference across the airfoil due to
wake curvature effects, [PA ] , is then determined by a numerical solution of
the integral equation (10). This Fredholm integral equation of the first kind

can be conveniently solved by first transforming the interval [0,11 on the x-axis
to the interval [0,w] in the unit circle and invoking certain properties of

Chebyshev polynomials. We refer the reader to Ref. I for further details.

Viscous Layer

The viscous-layer equations are solved in an inverse fashion (thus avoiding

the separation singularity), since the pressure is not prescribed but must be
determined in terms of an unknown displacement thickness distribution. Solutions

for the boundary layers on the upper and lower surfaces of the airfoil and for
the complete wake are determined by marching in the x- (or g) direction. In each
case the continuity and momentum equations are replaced by a set of linear alge-

braic equations using a finite difference approximation in which the nonlinear
terms in the momentum equation for the (n+l)th iteration are linearized about the
solution at the previous, (nth), iteration and the 9- and n-derivatives are
replaced by one-sided and central difference expressions, respectively. An up-

wind differencing scheme is used for the 9-derivatives; i.e., backward differ-
encing is used if F > 0 and forward differencing is used if F < 0. This approach

" ~results in a stable numerical algorithm in the presence of reverse flow and

should be more accurate than the commonly used FLARE approximation (Ref. 22) in
which the streamwise convection terms are set to zero in reverse-flow regions.

The resulting set of linear difference equations is solved using a super-

position technique. Essentially, the dependent variables, F and V, are decom-
posed into two components (e.g., F = OFI + FII) such that two sets of linear

algebraic equations are obtained. The components of F and V are related through
a viscous constraint relation, i.e.,

(I P 11/2
S(1/21) 1 + 41 P2--,1/2_1 1 (34)b. a 'c - V2 /Re "b

which is obtained from the definition of the displacement thickness, Eq. (22),

and after solving the resulting quadratic equation for 8 and eliminating the
ext*.aneous solution. The quantities la, Ib and Ic in Eq. (34) are defined by
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- (Me)2 f F2 dn (35a)

a 2 (e) 0

00-I =f[ + (YI(e)2FS'''~ II] FI d (35b)

.\., 0

and

I= f [I - FI + -1 (Me)2 (1 - F2)] dn (35c)
. 02

The solution for an asymmetric viscous wake is obtained by treating the

upper and lower sides of the wake simultaneously. A boundary condition is
imposed on F at each edge (c.f. Eq. (19)), and a condition is imposed on V at Zhe

*' reference streamline (c.f. Eq. (21)). At the trailing edge of an asymmetric
airfoil the upper- and lower-surface values of E and 11 differ from each other.

For the wake calculation, one set of independent variables, E and n, is used.
Therefore, to continue the boundary-layer solutions into the wake, the trailing-

edge velocity profile on the lower surface of the airfoil is expressed in terms
of upper-surface variables (E+, in+), so that a single set of independent vari-

ables can be employed for the wake calculation.

The definition for E, Eq. (13), contains the function g(E), and, since g is

generally on the order of 10 or more in turbulent flow, the upper- and lower-
surface values of E at the trailing edge can differ significantly, as noted

above. This difference can introduce inaccuracies into the numerical solution of
a strongly asymmetric turbulent flow. In particular, if the discrepancy between
the upper- and lower-surface values of E is large, the resolution accuracy for

the near-wake shear layer coming off the pressure surface of the airfoil will be
reduced by the redefinition of the lower-surface normal grid. To minimize this
effect, the same value of g(); i.e., g() = (eo + + eo _)/2, has been used for
both the suction- and pressure-surface boundary-layer calculations, as well as in

the wake. As a result of this procedure E_ - &+ + 0(c) at the trailing edge.

Since the function g is only a scaling parameter, the foregoing procedure will
not affect the boundary-layer solutions provided that the initial n-distributions
of grid points is chosen so that a sufficient resolution (in the normal direc-

tion) of the boundary layers along both airfoil surfaces and of the wake is main-
tained.

-
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Quasi-Simultaneous Coupling Procedure

The quasi-simultaneous coupling procedure requires a local coupling of the

inviscid and viscid solutions to determine the intermediate displacement thick-
ness distribution (6n+112) at each global iteration level. In the present appli-

cation this coupling is achieved by working with the two relations, Eqs. (17)
and (34) for the pressure gradient parameter, 8. In Eq. (17) 8 is defined in
terms of the inviscid properties at the edge of the viscous layer, while in Eq.
(34) it depends also on the details of the flow within the viscous layer. For

thin-airfoil flow fields it follows from Eq. (17) and the inviscid relations
which hold at the edge of the viscous layer, that to within first-order in E the
pressure gradient parameter is given by

-2E + • (36)
(1 + 2 d

Note that only the first-order pressure due to strong displacement-interaction

0 effects has been included in the foregoing expression for 8.

To assist in describing the local coupling procedure for asymmetric flow, we

introduce the integer index, k. For streamwise mesh stations (x (or E) = con-

* -. stant) along the upper and lower surfaces of the airfoil, we set

k = 2(i-IB) + 1, i = IB, IB+I,...,IT (37a)

and

k = 2(i-IB) + 2, i = IB, IB+l,..., IT, (37b)

respectively; and for mesh stations along the wake, we set

k = i - IT + 2(IT-IB) + 2, i = IT+l, IT+2,...,IE. (37c)

.1

Here IB and IE are the i indices corresponding to the stations at the beginning
and end, respectively, of the strong-interaction solution domain and IT corres-
ponds to the station at the trailing-edge point of the airfoil. The viscid/in-
viscid interaction solution at the nth global iteration level is obtained by

marching from k = 3 to k = KE = IE - IT +2(IT - IB) + 2. Thus for i < IT the
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solution at = is first updated on the upper surface of the airfoil and
then on the lower surface, while for i > IT the solution is updated for the com-
plete wake. Conditions at the beginning of the strong-interaction solution
domain (i.e., at k = 1,2) are fixed and are obtained as a direct solution of the

turbulent boundary-layer equations for a prescribed inviscid pressure gradient.

Discrete approximations to Eqs. (36) and (34) can be written in the form

k KE

a gk 6+1/2 +~j c. 9

" j  + kj j + Qk' k=3,.',KE (38)".~ij=l j=k+l

and

(e2 [1 + 4 ( e /121 1 k=3,...,KE (39)
. k be =Ibma) 1+4 a ( - b

4 V_2/Re

where the coefficients (Xk , and Qk are known and depend on the difference approx-
*imations used in Eqs. (313 and (32) to evaluate pD and in Eq. (36) to evaluate

dPD/d . The 6n are prescribed at the beginning of the nth global iteration for

all j, and theJ6n+l/2 for j < k are determined by the current ((n+l)th) marching
solution. Thus iqs. (38) and (39) provide two relations for determining the
values of 0k and 6n+1/2 at the kth station. In the semi-inverse procedure used
in Refs. 1 and 2 the 6n+I /2 in Eqs. (38) and (39) are replaced by S , resulting

in two solutions (OkI and kvs, k = 3,...,KE) for the pressure gradient
mnv visc,

parameter at each step of the global iteration procedure. These are then used to
determine the (n+l)th estimate for the displacement thickness distribution (c.f.

Eq. (30)). The local coupling of the inviscid and viscous solutions implied by
Eqs. (38) and (39) requires more computational effort per iteration level than a

semi-inverse calculation but, if properly constructed, it leads to a significant
reduction in the number of global iterations required to determine a converged
strong-interaction solution.

updated values of k (i.e., +/2) are determined, corresponding

Once upatdnaue1o/6k(ie.)
values of the inviscid flow properties (PD' ue, etc.) are determined in terms of

the 69+1/2 at j = l,...,k, and the Vn at j = k+l,...,KE, and the viscous-layer
variables F and V at station k are determined in terms of Sk. With this infor-
mation the marching solution can be continued downstream. For symmetric flows
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the foregoing procedure is considerably simplified since solutions are only
required on either the upper or lower half-planes.

As pointed out by Veldman (Ref. 6) and Davis (Ref. 20), the matrix of
influence coefficients, ak * in Eq. (38), must be diagonally dominant for a

successful implementation o' the quasi-simultaneous coupling procedure. To
achieve this we have employed the same discretization as used by Veldman (Ref.
19) for the symmetric pressure integral in Eq. (31) rather than the discretiza-

. ' tion used in our earlier work (Refs. 1 and 2) which yields a non-diagonally
dominant matrix of influence coefficients. In addition, the quantities DT and D
in Eqs. (31) and (32) and the pressure gradient dPD/d in Eq. (36) have been
evaluated using first-order accurate backward differenre approximations.
Finally, in the latter approximation the inviscid pressire at station k is

assumed to depend on 6n+1/2 for j = 3,...,k and 69 for j = k+l,... ,KE while theJ J , '
pressure at the upstream station k-m, where, for asymmetric flow, m = 2 for
stations on the airfoil and m = 1 for wake stations, is evaluated in terms of
6n +1/2 for j = 3,...,k-m and 69 for j = k-m+l,...,KE. The counter m is equal to
.1 J

*. one on both the airfoil and the wake for symmetric flow.

In Ref. 6 Veldman extended his method to asymmetric flows. He noted that
• the discretization which was applied to the asymmetric integral on the left-hand-

side of Eq. (32) is not diagonally dominant. However, he found that, provided
the grid is not excessively fine at the trailing edge, the solution is still

". convergent. In the present study, where the discretization of the asymmetric

integral is different than Veldman's, but also not diagonally dominant, similar
behavior is observed. All of the solutions for asymmetric flows obtained in the
present study converged with a relaxation factor, in Eq. (29), of one. However,

1. - the convergence rate slowed as the grid was refined in the vicinity of the trail-

ing edge, which is consistent with Veldman's observations and the analysis of
Wigton and Holt (Ref. 17).

0 In the present numerical implementation of the viscid/inviscid iteration

scheme, the viscous-layer equations are solved, as noted above, using a super-
position technique. It was found that this technique, in conjunction with the
quasi-simultaneous coupling procedure, leads to a very convenient method of solu-
tion for asymmetric wakes. The reason for this is that wakes and surface
boundary layers can be solved in an identical manner, except that different
boundary conditions are applied at n = 0.
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NUMERICAL RESULTS

The procedures outlined above have been applied to predict high Reynolds

number turbulent flow in the trailing-edge and near-wake region of a thin air-
foil. The airfoil geometry considered here is the same as that considered by
Veldman in Ref. 6 and in our earlier work (Refs. I and 2) on laminar trailing-
edge flows. The symmetric part of the airfoil (i.e., the thickness distribution)
is constructed from circular-arc trailing-edge sections which are smoothly joined

to flat sections which extend to the leading edge. For the purpose of analyzing
local strong-interaction effects at the trailing edge there is no need to pre-

scribe closure at the leading edge of the airfoil. The antisymmetric part of the

airfoil (i.e., the camber distribution) is determined from a prescribed pressure

jump across the airfoil. This geometry insures that the oncoming boundary layers
will remain attached until or shortly before the trailing edge. For laminar
flow, separation is encountered for relatively small amounts of thickness and
camber. It was anticipated that a separated turbulent mean flow would not occur
unless the airfoil thickness and/or camber was significantly more severe than

that at which laminar separation occurs. This expectation is confirmed by our
numerical results, as will be shown below.

The airfoil surfaces are located at

y±(x) = h±(x) = ± DTA(X) + DCA(x), xe[0,1] (40)

where 2DT A defines the airfoil thickness distribution and DC,A defines the
location of the airfoil camberline. Here DT,A is given by

DTA(x) = T/2 , O< x< X

T - R )2 xc < < 1 (41)

=0 ,x >

where T is the maximum thickness of the airfoil, R is the radius of curvature of
the circular-arc trailing-edge sections, i.e.,
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(T/2)2 + (l-x)
2

R =  ,(42)

T

and xc is the point at which these circular-arc sections are joined to the flat
sections of the airfoil. The inviscid pressure jump across the airfoil,
[pA(x)] , is assumed to be constant upstream of the point x = x and equal to
that acting on a flat plate inclined at angle a relative to the uniform stream
for x < xc < 1. Thus

A -2a (l-x )1/2, [p (x)] ... (1c) /  / 0 < x < xc

-2a (,_x) 1 /2

1/2 xc < x < 1 (43)

=0, x> 1

*,

4, -The foregoing pressure jump distribution corresponds to that for a thin cambered

airfoil which more closely resembles an inclined flat plate as x + 1. The loca-
tion of the airfoil camber line can be determined by integration after setting

[pA] = [p] and Dc = DCA in Eq. (11) and DCA(l) 0.

Numerical results will be presented for symmetric (a = 0) and asymmetric,
high-subsonic (M. = 0.7), turbulent flows at Re = 106 to illustrate the effects

of airfoil thickness and loading on the trailing-edge flow behaviour and separa-
tion phenomena. Qualitative comparisons between the results for low-subsonic
(M. = 0.1) turbulent and laminar flows will also be given in the form of the
mean flow streamlines. For all of these calculations the value of xc was set
at 0.75. Further, contributions to the pressures in the trailing-edge region

from viscous displacement effects upstream (x < XIB = 0.5) and downstream

(x > XIE = 1.5) of the strong-interaction solution domain have been regarded
as negligible.

For the turbulent calculations the extent of the viscous solution domain
normal to the airfoil was taken to extend to an n value of 11.0. This, together
with the use of the scaling function g(x) in the definition of C, Eq. (13),

places the outer boundary of the viscous-layer computational region sufficiently
far from the body to properly calculate the entire viscous layer at all stream-
wise locations. The distribution of points in the normal direction was chosen so

N~2
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that the value of the parameter y+ = yut/u, where y+ is a Reynolds number based
on typical turbulent velocity and length scales, and UT is the friction veloci-
ty (see Eq. 26d), was never greater than one at the first grid point off the
surface. This is generally accepted as being sufficient to prevent the solution
from being dependent on the normal grid spacing (e.g., see Ref. 23). A total of
41 grid points were used in the normal direction and stretching was applied to
give the desired value of y+ at the first grid point. The same grid stretching
was applied for the upper and lower surface boundary-layer calculations. In the

wake 81 normal grid points were used. In addition, a total of 81 variably-spaced
mesh lines were used in the streamwise direction with 51 points on the airfoil
and 30 points in the wake. A minimum streamwise spacing, Axmin of approximately
.000259 was applied at the trailing edge. This is an order of magnitude smaller

* than the minimum spacing used in the laminar calculations of Ref. 2. The same
streamwise distribution of points was used on both surfaces of the airfoil. The
distribution of grid points used to calculate the laminar streamline contours

N illustrated in Figs. 8 and 9 was the same as that used in Ref. 2.

The interaction solution was globally iterated until the maximum relative
change in the displacement thickness between two successive global iterations was

*less than jx1O- 6. This rather stringent level of convergence required about 50
iterations for a symmetric flow past a flat-plate trailing edge, and about 200
iterations for the most severe cases considered. Direct comparisons of the con-
vergence rates obtained with the semi-inverse and quasi-simultaneous procedures
were made for laminar flows and it was found that the rates achieved with the
latter were from two to four times faster than those achieved with the former.
Our turbulent flow calculations converged more slowly than those for correspond-
ing laminar flow because a much finer grid was employed to resolve the flows in
the vicinity of turbulent trailing edges. The mesh used here for the turbulent

calculations was determined by the most severe case considered (i.e., T = 0.06, a
= 0) for which a very short reverse-flow region was determined. For consistency
the same mesh was then used for all of the turbulent calculations. However, a

coarser mesh could be used for most of these cases and would result in more rapid
convergence. The relaxation factor W was set to one, except for the turbulent
symmetric flow with T = 0.06, where underrelaxation with w = 0.1 was required to
achieve a converged solution. Overrelaxation was not employed, but it probably
could have been used to advantage for a number of the cases considered.

Symmetric Trailing-Edge Flows

Results illustrating the effect of airfoil thickness on the flow in the

trailing-edge region are shown in Fig. 2. Values of T equal to 0 (flat-plate
airfoil), 0.02, 0.04, and 0.06 have been considered. For a double-circular-arc

trailing-edge profile (T > 0) the viscous displacement thickness (Fig. 2a)
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increases rapidly up to the trailing-edge point and then it decreases less rapid-
ly along the wake. The net effect is a smoothing of the effective shape of the
airfoil and its wake as seen by the outer inviscid flow. The skin friction co-
efficient, Cf, and wake centerline velocity distributions, u shown in Fig.
2b indicate that the flow separates for T - 0.06. The skin friction coefficient

and wake centerline velocity for T = 0.06 is shown on an expanded scale in a
region very close to the trailing edge in Fig. 2c. Note that in the separated-
flow case there is an abrupt change in the skin friction coefficient just before
the trailing edge. A similar behavior is seen in the separated laminar cases
shown in Fig. 2b of Ref. 2. However, there it occurs over a considerably longer

streamwise distance. In the turbulent calculation this feature could not be

resolved without using an extremely fine grid at the trailing edge. First-order
pressure (p) distributions are shown in Fig. 2c. For the flat-plate airfoil the
pressure decreases up to the trailing-edge point and then rapidly increases with
increasing streamwise distance, rising to the freestream value (p. - 0) in the

near wake. For the double-circular-arc trailing-edge configurations the pressure
increases with x up to the trailing edge and into the near wake, and then it
gradually drops towards its freestream value downstream. The flow separates only
for T = 0.06, and the reverse-flow region is of very limited extent. In this

case the pressure plateau typical of laminar trailing-edge separations is not
evident; however, a more rounded peak in the pressure distribution is observed as
T increases.

The differences in the flow behavior for the flat-plate and the thick
airfoils can be explained as follows. The sudden removal of the no-slip condi-

tion at the trailing edge causes the flow to accelerate in the streamwise direc-
tion resulting in a thinning of the boundary layer, an increase in skin friction
and a decrease in pressure as the trailing edge is approached. This behavior is

illustrated by the flat-plate (T = 0) results shown in Fig. 2. However, thick-

airfoil closure (in a finite trailing-edge angle) causes the flow to decelerate
as it approaches the trailing-edge point leading to a thickening of the boundary

layer along with a decrease in skin friction and an increase in pressure. The
turbulent results depicted in Fig. 2 and the laminar results shown in Fig. 2 of
Ref. 2 reveal that even for the smallest thicknesses calculated, the decelerating

effect due to thick airfoil closure is stronger than the accelerating effect due
to the relief of the no-slip condition.

Asymmetric Trailing-Edge Flows

Asymmetric flow results will be presented for thin cambered airfoils with
T = 0 (Fig. 3) and for T - 0.02 (Fig. 5). The camber distributions are defined
by prescribing the loading parameter, C in Eq. (43). The effects of viscous

V displacement and wake curvature on the pressure distributions acting on cambered
flat-plate (T 0) and 2% thick airfoils with a loading parameter C equal to 0.2

. '

26

%. .



R85-956634-6

are depicted in Figs. 4 and 6, respectively. In addition, the effect of airfoil
thickness is illustrated in Fig. 7 for a fixed value of the loading parameter
equal to 0.05.

Results indicating the effect of loading on the turbulent mean flow in the
vicinity of a cambered flat-plate airfoil operating at a Mach number of 0.7 and a

Reynolds number of 106 (based on the airfoil chord) are shown in Fig. 3. Similar
results have been reported in Ref. 1 for laminar flow at M. = 0.1. The turbu-

lent displacement thickness distributions are shown in Fig. 3a. The thickness of
the suction-surface boundary layer increases while that of the pressure-surface
boundary layer decreases with an increase in airfoil loading. The net effect is
a thickening of the displacement body in the trailing-edge region with an

increase in loading. These turbulent results show a very similar behavior to
those obtained for laminar flow (at M. = 0.1) in Ref. 1, but the turbulent
displacement thicknesses for M., = 0.7 are much larger than those for laminar

flow at M. = 0.1.

The skin friction coefficient and wake streamline velocity distributions are

shown in Fig. 3b. For the symmetric case (a = 0) the skin friction increases on
both sides of the airfoil as the flow accelerates approaching the trailing edge.
However, for a * 0 the suction-surface skin friction coefficient generally
decreases, except in the immediate vicinity of the trailing edge, and the

pressure-surface coefficient increases with increasing distance along the air-
foil. The acceleration of the flow before the trailing edge due to the relief of

the no-slip boundary condition is evident in all of the pressure-surface results.
However, on the suction surface and just before the trailing edge, the accelera-
tion diminishes as the loading increases until at the higher loadings no local
acceleration occurs. For a > 0.2 it appears that the decelerating effect of the
adverse pressure gradient on the suction surface at the trailing edge is stronger
than the local acceleration due to the relief of the no-slip boundary condition.
There is very little effect of airfoil loading on the wake streamline velocity
since the flows considered in Fig. 3 all remain attached to the airfoil surfaces.

If a significant one-sided separation occurred as a was increased, pronounced
changes in the wake streamline velocity distribution would be observed (see
Fig. 4 of Ref. 1). In addition, as expected, the turbulent mean flow accelerates

much more rapidly along the wake to its free stream velocity than in a corres-

ponding laminar flow.

The pressure distributions for the cambered flat-plate airfoil are shown in
Fig. 3c. The increasing pressure difference across the airfoil with increasing a

can be seen, as well as the crossing of the pressure- and suction-surface

pressures just upstream of the trailing edge leading to a small region of nega-
tive loading there. In the wake the pressure rises rapidly with increasing
streamwise distance to its free stream value (p f 0).

2
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Although the contribution to the lift acting on the airfoil from the loading

in the trailing-edge region increases with increasing a, (Fig. 3c), viscous

effects cause a significant reduction in the lift that would be predicted from
inviscid considerations alone. The thickening and thinning of the suction- and

-* pressure-surface boundary layers, respectively, with increasing loading tend to
uncamber the airfoil. In general, both displacement and wake curvature effects
tend to decrease the loading on the airfoil, but for turbulent flow at a Reynolds

number of 106 around a cambered flat plate the effect of wake curvature is
generally much smaller than that of viscous displacement. This is evident from
the results presented in Fig. 4 for a = 0.2. Here the inviscid pressure distri-
bution over the airfoil is shown along with the pressure that results when

viscous displacement effects are included, and finally, when viscous displacement
and wake curvature effects are included. The wake curvature effect tends to
decrease the loading on the airfoil over that due to viscous displacement alone,
giving rise to a negative loading in the immediate vicinity of the trailing
edge.

The effects of loading on a two-percent thick airfoil are considered in
Fig. 5. A comparison of these results with those for the zero-thickness airfoil
(Fig. 3) reveals a significant effect of airfoil thickness on the asymmetric flow
behaviour in the trailing-edge region. in particular, the displacement thickness

(Fig. 5a) tends to increase on both the pressure- and suction-surfaces of the
finite-thickness airfoil as the trailing edge is approached. In contrast, for
the cambered flat-plate airfoil, the displacement thickness decreases with
distance along the pressure surface just upstream of the trailing edge. This
difference in behaviour is due to the decelerating effect of thick airfoil
closure.

The skin friction coefficient and wake streamline velocity distributions are
depicted in Fig. 5b. Airfoil thickness causes the skin friction coefficient to
decrease on both the suction and pressure surfaces of the airfoil as the trailing

edge is approached. The flows considered in Fig. 5 remain attached to the

airfoil surfaces, but the results suggest that separation will occur on the
suction surface for sufficiently large values of the loading parameter, a.

The pressure distributions for the two-percent thick loaded airfoils are

shown in Fig. 5c. Again, the surface pressures for the two-percent thick airfoil
behave quite differently than those for the cambered flat-plate airfoil
(Fig. 3c). For the latter, the suction- and pressure-surface pressures tend to
increase and decrease, respectively, with distance along the airfoil. At the
trailing-edge point the pressure is below its free stream value (p = 0) and then

SI
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it rises rapidly to p = 0 in the near wake. For the thick airfoils (Fig. 5c) the
pressures on both airfoil surfaces near the trailing edge (say for x > .85) are

generally lower than those for the corresponding zero-thickness airfoils, but
they rise rapidly to a level, at the trailing edge, which is greater than the

free-stream pressure. In the near wake the pressure drops back to the free-

stream level at a relatively slow rate.

-:" The effects of the viscous displacement and wake curvature upon the pressure

distributions for the cambered flat-plate (Fig. 4) and the two-percent thick
(Fig. 6) airfoils are similar. However, the effect of wake curvature on the
pressure distribution for the two-percent thick airfoil (Fig. 6) is considerably

smaller than that indicated in Fig. 4 for the cambered flat plate airfoil.

The effect of varying airfoil thickness for a fixed value of the loading

parameter, a, is illustrated in Fig. 7. The value of a for which these calcula-
tions were performed is 0.05, and the values of the thickness parameter, T, are
0, 0.02, 0.04. We have not been able to determine a turbulent solution for T =

0.06 because of difficulties in converging the calculation caused by large
displacement thicknesses and the use of small grid spacings to resolve the flow

in the vicinity of the trailing edge.

The displacement thicknesses on both surfaces become larger at the trailing

edge as the airfoil thickness increases (Fig. 7a). However, the difference
between the upper- and lower-surface displacement thicknesses does not change
significantly, compared with the change in the displacement thickness itself.
For the thick airfoils the skin friction coefficient decreases along both

surfaces as the trailing edge is approached (Fig. 7b), with the flow on the
suction surface of the four-percent thick airfoil being close to separation at
the trailing edge. Another effect of increasing the airfoil thickness is to

* retard the approach of the wake streamline velocity to the free-stream value.
Finally, the pressure distributions are shown in Fig. 7c. For the attached flows

around the 2% and 4% thick airfoils the pressure reaches a maximum value just aft

of the trailing edge, and this value increases with increasing thickness. Also,
.. the loading on the airfoil near the trailing edge decreases as the airfoil thick-

ness increases. In fact, for T = 0.04, there is almost no loading over approxi-

mately the last 5% of airfoil chord. Finally, the distance along the wake
required for the pressure to return to its free stream value increases with
increasing thickness.

Streamlines for Laminar and Turbulent Mean Flows

It is helpful in attempting to understand the behaviour of the flow in the
trailing-edge region to examine streamline contours. Values of the stream func-

tion in the viscous layer, *(x,y), are determined from the relation
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Y
p= f pud = 2t f F dn (44)

0 0

where * is taken to be zero on the surfaces of the airfoil and on the reference

wake streamline; i.e., at = . After evaluating 0 at the mesh points used in

the viscous-layer calculation, a standard contour plotting package has been
applied to map lines of constant i and to produce the streamline plots shown in
Figs. 8 and 9. In these figures the same contour levels for * are displayed.

The Mach number M. for the cases presented in Figs. 8 and 9 is 0.1. The calcu-
lations were performed at this Mach number because of difficulties in converging
the laminar flow calculations at the Mach number, M. = 0.7, used in the
previous examples. This is due to the fact that an increase in Mach number tends
to increase the severity of the viscid/inviscid interaction (see Ref. 1), which

in turn leads to difficulties in obtaining a converged solution.

'. In Fig. 8 the streamline patterns for laminar and turbulent mean flows are

illustrated for the symmetric flow over a two-percent thick airfoil. The laminar
flow (Fig. 8a) is seen to be have an extensive separation bubble, with the
reverse-flow region extending over approximately 25% of airfoil chord. The

corresponding turbulent flow (Fig. 8b) is fully attached. In Fig. 9 the laminar
and turbulent mean flow streamlines are depicted for asymmetric flow (a = 0.07)

over a one-percent thick airfoil. The laminar case (Fig. 9a) has a rather exten-
sive region of one-sided separation. On the other hand, the turbulent flow
(Fig. 9b) remains fully attached to the airfoil. These figures dramatically
illustrate the effect that turbulence can have on suppressing a separation of the
viscous layer at the trailing edge of a thick and/or loaded airfoil.
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CONCLUDING REMARKS

An analytical procedure based on finite Reynolds number interacting
boundary-layer theory has been developed for predicting subsonic turbulent mean

flow in the trailing-edge and near-wake region of an airfoil. A quasi-simul-
taneous coupling procedure, which is characterized by a local coupling of the
viscous and inviscid solutions at each iteration level, is utilized, within an
overall global iteration strategy, to provide a relatively efficient solution

technique for flows with strong viscid/inviscid interactions. We find that the
superposition procedure used to determine inverse viscous-layer solutions leads
to a relatively simple implementation of the quasi-simultaneous coupling proce-

dure for asymmetric wakes. This analysis will provide a useful basis for future
studies on turbulent mean-flow behavior, including separation phenomena, in the
vicinity of an airfoil trailing edge. In particular it will allow detailed

investigations to be made on the effects of airfoil geometry, turbulence behavior
and oncoming boundary layer profiles on the mean flow in the trailing-edge/near-
wake region of an airfoil.

Numerical results have been presented for symmetric and asymmetric mean

flows past a prescribed family of airfoil trailing edges. The behavior of the

. flow in the airfoil trailing-edge and near-wake region, as the parameters

governing the airfoil thickness and camber distributions are varied, has been
demonstrated through a systematic parametric study. The effect of wake curvature

on the airfoil and near-wake pressure distribution is found to be much smaller
than the effect of viscous displacement for the airfoil geometries and free

stream Mach and Reynolds numbers considered here. Both effects tend to uncamber
the airfoil, leading to a reduction in the lift predicted by a purely inviscid
analysis. Separation at the trailing edge of a symmetric configuration is
observed to occur for a significantly thicker airfoil when the flow is turbulent

than when it is laminar. In addition, whereas in earlier laminar-flow studies
-.7 (Refs. 1 and 2) one-sided separation was observed, it was not predicted in the

preseit turbulent investigation. Because significantly more severe geometries

than those which induce laminar separation are required to cause a turbulent mean

flow to separate, and the use of linearized inviscid theory limits the severity
of the configurations that can be analyzed, a fully nonlinear inviscid flow
representation should be considered in future work to permit consideration of
highly-loaded airfoils.

During the course of this investigation a small symmetric turbulent separa-

tion was predicted at the trailing edge of a six-percent thick airfoil. Very
small grid spacings in the streamwise direction were applied to obtain this
solution. Unfortunately, this requirement tends to decrease the convergence rate

of the global viscid/inviscid iteration procedure. Although the resultant low

convergence rate could be accepted for obtaining benchmark solutions such as

31
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those calculated herein, additional work is required to make the present proce-
dure a more efficient one for practical calculations of strong viscid/inviscid
trailing-edge interactions. Another area for possible future consideration is
the development of methods incorporating wake curvature effects into the strong-
interaction solution procedure to permit the accurate prediction of flow past
highly loaded airfoils for which such effects could be significant. This would

.V entail the inclusion of normal pressure gradients in the viscous-layer formula-
tion, and may have a strong impact on turbulent mean-flow solutions in the vicin-
ity of a highly loaded airfoil trailing edge. In addition, alternative turbu-
lence models better capable of representing separated flows than the algebraic
eddy viscosity model used in this investigation, must be considered in order to
improve the predictive capability of a viscid/inviscid interaction analysis.

V32

t'.

0

n
V

".1*

,232

.,.., ..



R85-956634-6

REFERENCES

1. Vatsa, V. N. and Verdon, J. M., "Viscous/Inviscid Interacti. Analysis of

Asymmetric Trailing-Edge Flows," Numerical and Physical Aspects f

Aerodynamic Flows, Edited by T. Cebeci, Springer-Verlag, New York, i14, pp.

205-221.

2. Vatsa, V. N. and Verdon, J. M., "Viscid/Inviscid Interaction Analysis of

Separated Trailing-Edge Flows," AIAA Journal, Vol. 23, April 1985, pp. 481-

pp. 489.

3. Smith, F. T., "Interacting Flow Theory and Trailing-Edge Separation - No
Stall," Journal of Fluid Mechanics, Vol. 131, June 1983, pp. 4:9-250.

4. Smith, F. T., "On the High Reynolds Number Theory of Laminar Flows," IMA

Journal of Applied Mathematics, Vol. 28, May 1982, pp. 207-281.

5. Elliott, J. W. and Smith, F. T., "Separated Supersonic Flow Past a Trailing
Edge at Incidence," to appear in Computers and Fluids, 1985.

6. Veldman, A. E. P. "The Calculation of Incompressible Boundary Layers with

Strong Viscous-Inviscid Interaction," AGARD Symposium on Computation of
Viscous-Inviscid Flows, AGARD-CPP-291, 1980, Chapter 12.

7. Veldman, A. E. P. and Lindhout, J. P. F., "Quasi-Simultaneous Calculations
of Strongly Interacting Viscous Flow," presented at the Third Symposium on
Numerical and Physical Aspects of Aerodynamic Flows," Long Beach,

California, Jan. 21-24, 1985.

8. Cebeci, T. and Smith, A. M. 0., Analysis of Turbulent Boundary Layers,

Academic Press, New York, 1974, pp. 211-239.

9. Cebeci, T., Thiele, F., Williams, P. G. and Stewartson, K., "On the

Calculation of Symmetric Wakes I. Two-Dimensional Flows," Numerical Heat
Transfer, Vol. 2, 1979, pp. 35-60.

10. Brown, S. N. and Stewartson, K., "Wake Curvature and the Kutta Condition in
Laminar Flow," The Aeronautical Quarterly, Vol. 26, 1975, pp. 275-280.

11. Ashley, H. and Landahl, M., Aerodynamics of Wings and Bodies, Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1965, pp. 88-97.

.

33
............................. .......... ....... .... .

; y : --.................................................................................................................................-...-... ,.'y~



R85-956634-6

REFERENCES (Cont'd)

12. Davis, R. T. and Werle, M. J., "Progress on Interacting Boundary-Layer
Computations at High Reynolds Number," Numerical and Physical Aspects of
Aerodynamic Flows, Springer-Verlag, 1982, pp. 187-210.

13. Vatsa, V. N., Werle, M. J. and Verdon, 3. M., "Viscid/Inviscid Interaction
at Laminar and Turbulent Symmetric Trailing Edges," AIAA Paper No. 82-0165,
Orlando, Florida, Jan. 11-14, 1982.

14. Carter, J. E. and Wornom, S. F., "Solutions for Incompressible Separated

Boundary Layers Including Viscid-Inviscid Interaction," in Aerodynamic
Analyses Requiring Advanced Computers, Part I, prepared by NASA Langley
Research Center, March 1975, pp. 125-150.

15. Ceu i. T., Clark, R. W., Chang, K. C., Halsey, N. D. and Lee, K., "Airfoils
with Sep.ation and the Resulting Wakes," presented at the Third Symposium
on Numerical 4 1 Physical Aspects of Aerodynamic Flows," pp. 2-13 - 2-25,
January, 1985.

16. Carter, J. E., "A New Boundary Layer Interaction Technique for Separated
- .. Flows," AIAA Paper No. 79-1450, Williamsburg, Virginia, July 23-24, 1979.

17. Wigton, 1- B. and Hoit, M., "Viscous-Inviscid Interaction in Transonic

Flow," AIAA Paper 81-1003, Palo Alto, Calfornia, June 1982.

18. Edwards, D. E., and Carter, J. E., "A Quasi-Simultaneous Finite Difference
Approach for Strongly Interacting Flow," presented at the Thill Symposium on
Numerical and Physical Aspects of Aerodynamic Flows, January, 19b5, pp. 1-63
- 1-73.

19. Veldman, A. E. P., "New, Quasi-Simultaneous Mtllod to Calculate Interacting
Boundary Layers," AIAA Journal, Vol. 19, Jan. 196i, pp. 79-85.

20. Davis, R. T., "A Procedure for Solving the Compressible IuL,-racting Boundary
Layer Equations for Subsonic and Supersonic Flows," AIAA Paper N-. 84-1614,
Snowmass, Colorado, June 25-27, 1984.

21. Le Balleur, J. C. and Girodroux-Lavigne, P., "A Semi-Implicit and Unsteady
Numerical Method of Viscous-Inviscid Interaction for Transonic Separated
Flows," La Recherche Aerospatiale, No. 1984-1.

22. Reyhner, T. A. and Fligge-Lotz, I., "The Interaction of a Shock Wave with a
Laminar Boundary Layer," International Journal on Nonlinear Mechanics, Vol.
3, No. 2, pp. 173-179.

34



tR85-956634-6

REFERENCES (Cont'd)

23. Horstman, C. C., "Prediction of Separated Asymmetric Trailing-Edge Flows at

Transonic Mach Numbers," AIAA Journal, Vol. 21, September 1983, pp. 1255-

1261.

S.5

%'%

i..

",." 35

,~~~~~~...°. ................. ............. ............ .............- . . •... . . . . ..



R85-956634-6

LIST OF FIGURES

1. High Reynolds number flow around a thin airfoil.

2. Symmetric trailing-edge flow: effect of airfoil thickness; M,.= 0.7, Re=
106, a = 0:

a) Displacement thickness distributions.

b) Skin friction and wake centerline velocity distributions.

c) Pressure distributions.

3. Asymmetric trailing-edge flow: effect of airfoil loading; M,. 0.7, Re =

106, T = 0:

a) Displacement thickness distributions.

b) Skin friction and wake streamline velocity distributions.

c) Pressure distributions.

4. Viscous effects on the pressure in the trailing-edge region of a cambered

flat-plate airfoil; M. = 0.7, Re = 106, a = 0.2, T = 0. ..... Airfoil;

Airfoil + viscous displacement; - Airfoil + viscous displacement

+ wake curvature.

5. Asymmetric trailing-edge flow: effect of airfoil loading for a 2% thick air-

foil; M. = 0.7, Re = 106, T = 0.02:

a) Displacement thickness distributions.

N - b) Skin friction and wake streamline velocity distributions.

c) Pressure distributions.

6. Viscous effects on the pressure in the trailing-edge region of a 2% thick

airfoil; M. = 0.7, Re = 106, a = 0.2, T = 0.02 .------ Airfoil,

Airfoil + viscous displacement; - Airfoil + viscous displacement + wake

curvature.

36
I%



R85-956634-6

LIST OF FIGURES (Cont'd)

7. Asymmetric trailing-edge flow: effect of airfoil thickness; M. = 0.7, Re
106, = 0.05.

a) Displacement thickness distributions.

b) Skin friction and wake streamline velocity distributions.

c) Pressure distributions.

8. Effect of turbulence on trailing-edge streamline pattern for symmetric flow
with M, = 0.1, Re = 106 , ai = 0 and T - 0.02: (a) laminar flow (b)

turbulent flow.

-A 9. Effect of turbulence on trailing-edge streamline pattern for asymmetric flow

with M.. = 0.1, Re = 106, a - 0.07 and T 0.01: (a) laminar flow (b)

turbulent flow.

4"4

37

... '



(,.



.(4*I v~

(x h (x

y

-4Y

'--.4c

h W.

Fi.IHg enld ubrfo run hnarol

85-838-



12

* .- 10

C 8 T 0.06

C6,
* -S LJz*Y

4.4. 6

0.0

z
LUJ

LU

0.0

CL 4
C/)

00

2

0.85 0.90 0.95 1.00 1.05 1.10

*W DISTANCE FROM LEADING EDGE, x

Fig. 2 Symmetric trallin~.edge flow: effect of airfoil thickness;
.4.M 0, =0.7, Re =10 , a 0: a) Displacement thickness distributions.

85-8-38-2



R85-956634-6

2.5 1.0

2.0- -0.8

T=Tr

N 0.6
002

zr

LL
LL 1.0- 04'

0 I

z rz
0 <

rn
() r-

0
-L u. 0.5 0.2

z -

C,)

01.0

DISTANCE FROM LEADING EDGE, x

Fig. 2 Symmetric trailing-edge flow: effect of airfoil thickness;
* moo =0.7, Re =i106, ce =0: b) Skin friction and wake

centerline velocity distributions.

8"--38-3



R85-956634-6

015

0.10

00

0l

0~

-0.05

0.85 0.90 0.95 1.00 1.05 1.10

-: DISTANCE FROM LEADING EDGE, x

V .

Fig. 2 Symmetric trailing-edge flow: effect of airfoil thickness;
M =0.7, Re =106, a =0: c) Pressure distributions.

85-8-38-5

IL



R85-956634-6

7.0 140

6.0 12,0

a=0 4

+1 50SUCTIONC/
SURFACE I~

U5 z

z04
*" 4.08.

00

I- Ul)z
LUJ

o 3.0 0 .

03'

0.4
2.0 - ~ PRESSURE-2.0 SURFACE4.

1.0 1 I 2.0
0.85 090 0.95 10 .511

DISTANCE FROM LEADING EDGE, x

Fig. 3 Asymmetric trailing-edge flow: effect of airfoil loading;
M =0.7, Re =106, T =0: a) Displacement thickness distributions.



R85-956634-6

3.0 1.0

;DE SS URE

25 SuRFACE -0.8
=0 4

03 =0.01

*CJ 2.0 0 06
001

z -

* U

Lo >

0 0
o) M

cc 1.0 -0.2
z 03C

40

40.85 0.90 0.95 1. 00 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 3 Asymmetric trailing-edge flow: effect of airf oil loading;
M oo = 0.7, Re = 106, T =0: b) Skin friction and wake streamline
velocity distributions.

* 85-8-310-7

AA-.-.-- - - , .-. . . . .. . . . .



R85-956634-6

0.15
* a0 4

PRESSURE
S UR FACE

03
0.10

L

* 0 0
LU

cc

*01

04 SURFACE

0 51' II 1
0.85 0.90 0.95 1.00 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 3 Asymmetric trailing-edge flow: effect of airfoil loading;
M 0C= 0.7, Re =106, T =0: c) Pressure distributions.

85-8-38-8a

%



0 15

0.10-

'r4'

CLA

LL'a

N" a'

U)
LU
CE

0...0

-0.05

-010.85 0.90 0.95 1.00 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 4 Viscous effects on the pressure In the trailing-edge region
of a cambered flat-plate airfoil; Moo =0.7, Re =10 6,a =0.2, T=0.
------------Airf oil; AM -Aroil + viscous displacement;

Airfoil + viscous displacement + wake curvature.

85-8-38-9



R85-956634-6

8.0 16.0

7.0 14.0

+1

6.0 12.0
rr")

0_v0 c=O3 "
.4 LU F-

z0
40 02 K

T_ M
9- 5.0 10.0 z
z -

... "-"SUCTION 01
"'" UJ SUJRFACE C

LU Ix 001z
M

~4*0 8. 15

0.1 005

3 3.0 6 0.0 0

2.0 _' 0 4.0
0.85 0.90 - .0

DISTANCE FROM LEADING EDGE, x

Fig. 5 Asymmetric trailing-edge flow: effect of airfoil loading for
a 2% thick airfoil; M 0 = 0.7, Re = 106 , T = 0.02: a) Displacement
thickness distributions.

.4



R85-956634-6

2.5 1.0

00.

+01

ccr

z>
LL

LL 1.0.4 Z
LU01<
0o
Q) I-

z 0 
0

LL. 0. -<0.

0 0.

-0.51 1 -0.2
0.85 0.90 0.95 1.0 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 5 Asymmetric trailing-edge flow: effect of airfoil loading for
a 2% thick airfoil; M. =0.7, Re = 106, T =0.02: b) Skin
friction and wake streamline velocity distributions.

%S83-1

4d4
~ V~ I, .& . ... ~. . . -.--



R85-956634-6

0.15

0.10-

0.05

L

0~0

-01-02' SURFACE

0.85 0.90 0.95 1.00 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 5 Asymmetric trailing-edge flow: effect of airfoil loading for a 2%
thick airfoil; M ~ 0.7, Re 1 06, T =0.02: c) Pressure distributions.

45'"B-



0.3

0.2

0.1,i

D 0

U

LUJ

-0.1

d -02-

03 -
0.85 0.90 0.95 1.00 1.05 1.10

DISTANCE FROM LEADING EDGE. x

Fig. 6 Viscous effects on the pressure in the trailing-edge region
of a 2% thick cambered airfoil; M. =0.7, Re = 106, a =0.2,
T = 0.02. - - - - -Airf oil; - - - Airf oil + viscous
displacement; - Airfoil + viscous displacement +
wake curvature.



8 16

7 14

+1 0 040

c~ 6 12 _0

U)
LUJ T =004 Z

Y SUCTION

*5 SURFACE 10

I- z
Z m
LU U)

L))

0-

3 6

2 4
0.85 0.90 0.95 1.00 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 7 Asymmetric trailing-edge flow: effect of airfoil thickness;
M ~ 0.7, Re =106, a =0.05: a) Displacement thickness distributions.

85-8-38-14

V.



R85-956634-6

2.5 2.5

2.0 2.0

C\J T=O

co 1.5 -00 1.

z00

LL
LL
wL z
0 1.0 m
z M
0 o,
0) PRESSURE -

C1 :

0 0

-0.5 1 1 I -0.5
0.85 0.90 0.95 1 .00 1 .05

DISTANCE FROM LEADING EDGE, x

Fig. 7 Asymmetric trailing-edge flow: effect of airfoil thickness;
M, =0.7, Re = 106, a = 0.05: b) Skin friction and wake
streamline velocity distributions.

o S85-8-38-1i5

-%e



0.10

0.05 -PESR

SUFC 00

CL

LU

-0.05

-010SUFC

-0.15 I

0.85 0.90 0.95 1.00 1.05 1.10

DISTANCE FROM LEADING EDGE, x

Fig. 7 Asymmetric trailing-edge flow: effect of airfoil thickness;
M o =0.7, Re =106, a =0.05: C) Pressure distributions.

e:

%8.8

* j I



- - - - - - - -

12

8

.. . .. . . .. . .

4

0

.. . .. . .. . . .. .. .. .

12
(b)

q:

0

4

8. ...... .

-10
080 085 00 095.1.0.105.1..01.15.1.2

DISTNCEFRO.LEDIN.EDE..

Fig8 Efec ofturulece.n.ral.n...g steaminepater
fo .smmticflwwih.....1.e..16 o 0 n
T .02().amnr.lw.b)trb.etflw

4Ba3s

.~ ~ . V V~.p ~ .~ ,- ~- ,. .- * .............. -.



12

(a)

8

0

-4 0

0 LU

I- 12
0 (b)

8
0

.... ............ ....

4.4

-4 0=O4

-8

-12 I
0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

DISTANCE FROM LEADING EDGE, x

Fig. 9 Effect of turbulence on trailing-edge streamline pattern
f or asymmetric f low with M 0 = 0.1, Re = 100, a =0.07 and
T=0.01: (a) laminar flow (b) turbulent flow.
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